Cryo-electron microscopy of the f1 filamentous phage reveals a new paradigm in viral infection and assembly

Author:

Conners RebeccaORCID,León-Quezada Rayén Ignacia,McLaren MathewORCID,Bennett Nicholas JORCID,Daum Bertram,Rakonjac JasnaORCID,Gold Vicki A M

Abstract

AbstractPhages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses. Over nearly five decades, Ff has seen an extraordinary range of applications, including in phage display and nanotechnology. However, the complete structure of the phage capsid and consequently the mechanisms of infection and assembly remain largely mysterious. Using cryo-electron microscopy and a highly efficient system for production of short Ff-derived nanorods, we have determined the first structure of a filamentous virus, including the filament tips. Structure combined with mutagenesis was employed to identify domains of the phage that are important in bacterial attack and for release of new phage progeny. These data allow new models to be proposed for the phage lifecycle and will undoubtedly enable the development of novel biotechnological applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3