Novel inhibitors against COVID-19 main protease suppressed viral infection

Author:

Ramachandran Vijayan,Liu Yanyun,He Qianying,Tang Andrew,Ronaldson Patrick,Schenten Dominik,Chang Rui

Abstract

SummarySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can cause severe disease with high mortality rates, especially among older and vulnerable populations. Despite the recent success of vaccines and approval of first-generation anti-viral inhibitor against SARS-CoV-2, an expanded arsenal of anti-viral compounds that limit viral replication and ameliorate disease severity is still urgently needed in light of the continued emergence of viral variants of concern (VOC). The main protease (Mpro) of SARS-CoV-2 is the major non-structural protein required for the processing of viral polypeptides encoded by the open reading frame 1 (ORF1) and ultimately replication. Structural conservation of Mpro among SARS-CoV-2 variants make this protein an attractive target for the anti-viral inhibition by small molecules. Here, we developed a structure-basedin-silicoscreening of approximately 11 million compounds in ZINC15 database inhibiting Mpro, which prioritized 9 lead compounds for the subsequentin vitrovalidation in SARS-CoV-2 replication assays using both Vero and Calu-3 cells. We validated three of these compounds significantly inhibited SARS-CoV-2 replication in the micromolar range. In summary, our study identified novel small-molecules significantly suppressed infection and replication of SARS-CoV-2 in human cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3