Evaluating the analytical validity of mutation calling pipeline for tumor whole exome sequencing

Author:

Cheng Chinyi,Huang Jia-Hsin,Hsu Jacob Shujui

Abstract

AbstractDetecting somatic mutations from the patients’ tumor tissues has the clinical impacts in medical decision making. Library preparation methods, sequencing platforms, read alignment tools and variant calling algorithms are the major factors to influence the data analysis results. Understanding the performance of the tool combinations of the somatic variant calling pipelines has become an important issue in the use of the whole exome sequences (WES) analysis in clinical actions. In this study, we selected four state-of-the-art sequence aligners including BWA, Bowtie2, DRAGMAP, DRAGEN aligner (DragenA) and HISAT2. For the variant callers, we chose GATK Mutect2, Sentieon TNscope, DRAGEN caller (DragenC) and DeepVariant. The benchmarking tumor whole exome sequencing data released from the FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium was applied as the true positive variants to evaluate the overall performance.Multiple combinations of the aligners and variant callers were used to assess the variation detection capability. We measured the recall, precision and F1-score for each combination in both single nucleotide variants (SNVs) and short insertions and deletions (InDels) variant detections. We also evaluated their performances in different variant allele frequencies (VAFs) and the base pair length. The results showed that the top recall, precision and F1-score in the SNVs detection were generated by the combinations of BWA+DragenC(0.9629), Bowtie2+TNscope(0.9957) and DRAGMAP+DragenC(0.9646), respectively. In the InDels detection, BWA+DragenC(0.9546), Hisat2+TNscope(0.7519) and DragenA+DragenC(0.8081) outperformed the other combinations in the recall, precision and F1-Score, respectively. In addition, we found that the variant callers could bias the variant calling results. Finally, although some combinations yielded high accuracies of variant detection, but some variants still could not be detected by these outperformed combinations. The results of this study provided the vital information that no single combination could achieve superior results in detecting all the variants of the benchmarking dataset. In conclusion, applying both merged-based and ensemble-based variants detection approaches is encouraged to further detect variants comprehensively.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3