Accurate Computational Design of 3D Protein Crystals

Author:

Li ZheORCID,Wang ShunzhiORCID,Nattermann UnaORCID,Bera Asim K.ORCID,Borst Andrew J.ORCID,Bick Matthew J.,Yang Erin C.ORCID,Sheffler William,Lee ByeongduORCID,Seifert SoenkeORCID,Nguyen Hannah,Kang Alex,Dalal Radhika,Lubner Joshua M.ORCID,Hsia YangORCID,Haddox HughORCID,Courbet Alexis,Dowling Quinton,Miranda Marcos,Favor AndrewORCID,Etemadi AliORCID,Edman Natasha I.ORCID,Yang Wei,Sankaran BanumathiORCID,Negahdari Babak,Baker David

Abstract

SummaryProtein crystallization plays a central role in structural biology1, with broad impact2in pharmaceutical formulation3, drug delivery4, biosensing5, and biocatalysis6,7. Despite this importance, the process of protein crystallization remains poorly understood and highly empirical8–10, with largely unpredictable crystal contacts, lattice packing arrangements, and space group preferences, and the programming of protein crystallization through precisely engineered sidechain-sidechain interactions across multiple protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach to designing three-dimensional (3D) protein crystals with pre-specified lattice architectures at atomic accuracy that hierarchically constrains the overall degree of freedoms (DOFs) of the system. We use the approach to design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into large 3D crystals (>100 μm). Small-angle X-ray scattering and X-ray crystallography show these crystals are nearly identical to the computational design models, with the design targetF4132 andI432 space groups and closely corresponding overall architectures and protein-protein interfaces. The crystal unit cell dimensions can be systematically redesigned while retaining space group symmetry and overall architecture, and the crystals are both extremely porous and highly stable, enabling the robust scaffolding of inorganic nanoparticle arrays. Our approach thus enables the computational design of protein crystals with high accuracy, and since both structure and assembly are encoded in the primary sequence, provides a powerful new platform for biological material engineering.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3