Energetic costs of bill heat exchange demonstrate contributions to thermoregulation at high temperatures in toco toucans (Ramphastos toco)

Author:

Chaves Jussara N.ORCID,Tattersall Glenn J.ORCID,Andrade Denis V.ORCID

Abstract

ABSTRACTBody temperature regulation in the face of changes in ambient temperature and/or in metabolic heat production involves adjustments in heat exchange rates between the animal and the environment. One of those mechanisms include the modulation of the surface temperature of specific areas of the body through vasomotor adjustment and blood flow control, to change the thermal conductance of this region, thereby promoting dissipation or conservation of body heat. In homeotherms, this thermoregulatory adjustment is essential for the maintenance of body temperature over a moderate temperature range, known as the thermal neutral zone (TNZ), without increasing metabolic rate (MR). Thermal windows are poorly insulated body regions and highly vascularized that are particularly efficient for heat dissipation through that mechanism. The bill of the toco toucan (Ramphastos toco) has been described as a highly efficient thermal window and hypothesized to assist in the thermal homeostasis of this bird. Herein, we directly evaluated the contribution of heat exchange through the bill of the toco toucan and role of the bill in the delimitation of the TNZ. To do this, we measured metabolic rate, via oxygen consumption, over a range of ambient temperature from 0 to 35°C (every 5°C). MR measurements were made in birds with the bill intact (control group) and with the bill artificially insulated (experimental group). The limits of the TNZ, 10.9-25.0°C for the control group and 10.8-24.1°C for the experimental group, did not differ between the treatments. MR differed among treatments only at elevated temperatures (30 and 35°C), reaching values of 0.97 ml O2·g-1·h-1·°C-1(± 0.06) for the control group and 1.20 ml O2·g-1·h-1·°C-1(± 0.07) for the experimental group at 35°C. These results indicate that while heat dissipation through the bill does not contribute significantly to widening of the TNZ, it may well be critically important in assisting body temperature regulation at higher temperatures extending above the upper limit of the TNZ. We estimate that the contribution of the bill to total heat exchange approaches 31% of basal metabolic heat production, providing evidence of the substantial role of peripheral heat exchange and linking the role of appendage size as a key factor in the evolution of thermoregulatory responses in endotherms.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Alvarenga, H. (2004). Tucanos das Americas / Toucans of the Americas. Rio de Janeiro,: M. Pontual.

2. Espacialização de dados climáticos do cerrado mineiro;Revista Horizonte Científico,2008

3. Fitting Linear Mixed-Effects Models Usinglme4

4. Blaxter, K. (1989). Energy metabolism in animals and man. Cambridge: Cambridge University Press.

5. Thermal tolerances in rodents: species that evolved in cold climates exhibit a wider thermoneutral zone;Evolutionary Ecology Research,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3