A synthetic lethal dependency on casein kinase 2 in response to replication-perturbing drugs in RB1-deficient ovarian and breast cancer cells

Author:

Bulanova DariaORCID,Akimov Yevhen,Senkowski Wojciech,Oikkonen Jaana,Gall-Mas Laura,Timonen Sanna,Elmadani Manar,Hynninen Johanna,Hautaniemi SampsaORCID,Aittokallio Tero,Wennerberg Krister

Abstract

AbstractTreatment of patients with high-grade serous ovarian carcinoma (HGSOC) and triple-negative breast cancer (TNBC) includes platinum-based drugs, gemcitabine, and PARP inhibitors. However, resistance to these therapies develops in most cases, highlighting the need for novel therapeutic approaches and biomarkers to guide the optimal treatment choice. Using a CRISPR loss-of-function screen for carboplatin sensitizers in the HGSOC cell line OVCAR8, we identifiedCSNK2A2, the gene encoding for the alpha’ (α’) catalytic subunit of casein kinase 2 (CK2). Expanding on this finding, we confirmed that the CK2 inhibitors silmitasertib and SGC-CK2-1 sensitized many, but not all, TNBC and HGSOC cell lines to the drugs that perturb DNA replication, including platinum drugs, gemcitabine, and PARP inhibitors. We identified RB1 tumor suppressor deficiency as a prerequisite context for the CK2 inhibition-mediated sensitization to these therapeutics. In RB1-deficient cells, CK2 inhibition resulted in accumulation of cells in S phase of the cell cycle, associated with micronuclei formation, and accelerated PARP inhibitor-induced aneuploidy and mitotic cell death. Patient HGSOC organoids that lacked RB1 expression displayed an enhanced long-term response to carboplatin and PARP inhibitor niraparib when combined with silmitasertib, suggesting RB1-stratified efficacy in patients. As RB1 deficiency affects up to 25% of HGSOC and 40% of TNBC cases, CK2 inhibition, proven safe from previous clinical exploration with silmitasertib, is a promising approach to overcome resistance to standard therapeutics in large strata of patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3