Dynamic Interaction Learning and Multimodal Representation for Drug Response Prediction

Author:

Bi Yanguang,Zhou Mu,Hu Zhiqiang,Zhang Shaoting,Lyu Guofeng

Abstract

AbstractMining multimodal pharmaceutical data is crucial for in-silico drug candidate screening and discovery. A daunting challenge of integrating multimodal data is to enable dynamic feature modeling generalizable for real-world applications. Unlike conventional approaches using a simple concatenation with fixed parameters, in this paper, we develop a dynamic interaction learning network to adaptively integrate drug and different reactants on multimodal tasks towards robust drug response prediction. The primary objective of dynamic learning falls into two key aspects: at micro-level, we aim to dynamically search specific relational patterns on the whole reactant range for each drug-reactant pair; at macro-level, drug features can be used to adaptively correlate with different reactants. Extensive experiments demonstrate the validity of our approach in both drug protein interaction (DPI) and cancer drug response (CDR) tasks. Our approach achieves superior performance on both DPI (AUC = 0.967) and CDR (AUC = 0.932) tasks, outperforming competitive baselines from four real-world, drug-outcome datasets. In addition, the performance on the challenging blind subsets is remarkably improved, where AUC value increases from 0.843 to 0.937 on blind protein set of DPI task, and Pearson’s correlation value increases from 0.516 to 0.566 on blind drug set of CDR task. A series of case studies highlight the potential generalization and interpretability of dynamic learning in the in-silico drug response assessment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3