A preclinical model of THC edibles that produces high-dose cannabimimetic responses

Author:

English Anthony,Uittenbogaard Fleur,Torrens Alexa,Sarroza Dennis,Slaven Anna,Piomelli Danielle,Bruchas Michael,Stella Nephi,Land Benjamin

Abstract

AbstractBackgroundNo preclinical approach enables the study of voluntary oral consumption of high dose Δ9-tetrahydrocannabinol (THC) and its intoxicating effects, mainly owing to the aversive response of rodents to THC that limits intake. Here we developed a palatable THC formulation and an optimized access paradigm in mice.MethodsTHC was formulated in chocolate gelatin (THC-E-gel). Adult male and female mice were allowedad libitumaccess for 2 h. Cannabimimetic responses (hypolocomotion, analgesia, and hypothermia) were measured following access. Levels of THC and its metabolites were measured in blood and brain samples. Acoustic startle responses were measured to investigate THC-induced psychotomimetic behavior.ResultsAccess to high-dose THC-E-gel (≈30 mg/kg over 2 h) resulted in robust consumption and CB1receptor-dependent behavioral responses. High-dose THC-E-gel consumption resulted in parallel accumulation of THC and its psychoactive metabolite 11-OH-THC in brain, a profile that contrasts with the known rapid decline in brain 11-OH-THC levels following intraperitoneal THC injections. High-dose THC-E-gel consumption increased the acoustic startle response preferentially in males, and this psychotomimetic response was remarkably different from the response triggered by intraperitoneal contingent administration of THC. Comparing cannabimimetic responses elicited by intraperitoneal versus oral administration enabled us to model a “predicted dose” of THC that triggers these responses.ConclusionVoluntary consumption of high-dose THC-E-gel triggered equivalent cannabimimetic responses in male and female mice but an increased acoustic startle response preferentially in males. These findings indicate that THC-E-gel offers a robust preclinical consumption model to study cannabimimetic responses in mice, including sex-dependent psychotomimetic responses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3