Abstract
AbstractSubsensory noise stimulation targeting sensory receptors has been shown to improve balance control in healthy and impaired individuals. However, the potential for application of this technique in other contexts is still unknown. Gait control and adaptation rely heavily on the input from proprioceptive organs in the muscles and joints. Here we investigated the use of subsensory noise stimulation as a means to influence motor control by “boosting” proprioception during locomotor adaptations to forces delivered by a robot. The forces increase step length unilaterally and trigger an adaptive response that restores the original symmetry. Healthy participants performed two adaptation experiments, one with stimulation applied to the hamstring muscles and one without. We found that participants adapted faster but to a lesser extent when undergoing subsensory stimulation. We argue that this behaviour is due to the dual effect that the stimulation has on the afferents encoding position and velocity that are present in the muscle spindles.
Publisher
Cold Spring Harbor Laboratory