Exome-wide benchmark of difficult-to-sequence regions using short-read next-generation DNA sequencing

Author:

Hijikata Atsushi,Suyama Mikita,Kikugawa Shingo,Matoba Ryo,Naruto Takuya,Enomoto Yumi,Kurosawa Kenji,Harada Naoki,Yanagi Kumiko,Kaname Tadashi,Miyako Keisuke,Takazawa Masaki,Sasai Hideo,Hosokawa Junichi,Itoga Sakae,Yamaguchi Tomomi,Kosho Tomoki,Matsubara Keiko,Kuroki Yoko,Fukami Maki,Adachi Kaori,Nanba Eiji,Tsuchida Naomi,Uchiyama Yuri,Matsumoto Naomichi,Nishimura Kunihiro,Ohara Osamu

Abstract

AbstractNext-generation DNA sequencing (NGS) in short-read mode has been recently used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, focusing mostly on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains mostly unexplored despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions using 10 genome sequence features on the basis of real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). We used the obtained metrics, designated “UNMET score,” along with other lines of structural information of the human genome to identify difficult-to-sequence genomic regions using conventional NGS. Thus, the UNMET score could provide appropriate caveats to address potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3