Synaptic weights that correlate with presynaptic selectivity increase decoding performance

Author:

Gallinaro Júlia V.,Scholl Benjamin,Clopath Claudia

Abstract

AbstractThe activity of neurons in the visual cortex is often characterized by tuning curves, which are thought to be shaped by Hebbian plasticity during development and sensory experience. This leads to the prediction that neural circuits should be organized such that neurons with similar functional preference are connected with stronger weights. In support of this idea, previous experimental and theoretical work have provided evidence for a model of the visual cortex characterized by such functional subnetworks. A recent experimental study, however, have found that the postsynaptic preferred stimulus was defined by the total number of spines activated by a given stimulus and independent of their individual strength. While this result might seem to contradict previous literature, there are many factors that define how a given synaptic input influences postsynaptic selectivity. Here, we designed a computational model in which postsynaptic functional preference is defined by the number of inputs activated by a given stimulus. Using a plasticity rule where synaptic weights tend to correlate with presynaptic selectivity, and is independent of functional-similarity between pre- and postsynaptic activity, we find that this model can be used to decode presented stimuli in a manner that is comparable to maximum likelihood inference.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3