Abstract
AbstractCryo-electron tomography (cryo-ET) is the prime method for cell biological studies in three dimensions (3D) at high resolution. We have introduced cryo-scanning transmission electron tomography (CSTET), which can access larger 3D volumes, on the scale of 1 micron, making it ideal to study organelles and their interactionsin situ. Here we introduce two relevant advances: a) we demonstrate the utility of multi-color super-resolution radial fluctuation light microscopy under cryogenic conditions (cryo-SRRF), and b) we extend the use of deconvolution processing for dual-axis CSTET data. We show that cryo-SRRF nanoscopy is able to reach resolutions in the range of 100 nm, using commonly available fluorophores and a conventional widefield microscope for cryo-correlative light-electron microscopy (cryo-CLEM). Such resolution aids in precisely identifying regions of interest before tomographic acquisition and enhances precision in localizing features of interest within the 3D reconstruction. Dual-axis CSTET tilt series data and application of entropy regularized deconvolution during post-processing results in close-to isotropic resolution in the reconstruction without averaging. We show individual protein densities in a mitochondrion-ER contact in a cell region 850 nm thick. The integration of cryo-SRRF with deconvolved dual-axis CSTET provides a versatile workflow for studying unique objects in a cell.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献