Spatial Localization Ability of Planarians Identified Through the Light Maze Paradigm

Author:

Qian Renzhi,yan Yuan,Zhang Yixuan,Chi Yuanwei,Chen Yuxuan,Hao Kun,Xu Zhen,Yang Guang,Shao Zilun,Wang Yuhao,Li Xinran,Lu Chenxu,Chen Kehan,Pei Yu,Zhang Wenqiang,Wang Baoqing,Ying Zhengxin,Huang Kaiyuan

Abstract

AbstractSpatial localization ability is crucial for free-living animals to fit the environment. As shown by previous studies, planarians can be conditioned to discriminate a direction. However, due to their simplicity and primitiveness, they had never been considered to have true spatial localization ability to retrieve locations of objects and places in the environment. Here, we introduce a light maze training paradigm to demonstrate that a planarian worm can navigate to a former recognized place from the start point, even if the worm is transferred into a newly produced maze. This finding identifies the spatial localization ability of planarians for the first time, which provides clues for the evolution of spatial learning. Since the planarians have a primitive brain with simple structures, this paradigm can also provide a simplified model for a detailed investigation of spatial learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3