Integrative single-cell characterization of hypothalamus sex-differential and obesity-associated genes and regulatory elements

Author:

Nguyen Hai P.,Chan Candace S.Y,Cintron Dianne Laboy,Sheng Rory,Harshman Lana,Nobuhara Mai,Ushiki Aki,Biellak Cassidy,An Kelly,Gordon Gracie M.,Mifsud Francois,Blake Abbey,Huang Eric J.,Hemberg Martin,Vaisse Christian,Ahituv Nadav

Abstract

AbstractOver 500 noncoding genomic loci are associated with obesity. The majority of these loci reside near genes that are expressed in the hypothalamus in specific neuronal subpopulations that regulate food intake, hindering the ability to identify and functionally characterize them. Here, we carried out integrative single-cell analysis (RNA/ATAC-seq) on both mouse and human male and female hypothalamus to characterize genes and regulatory elements in specific cell subpopulations. Utilizing both transcriptome and regulome data, we identify over 30 different neuronal and non-neuronal cell subpopulations and a shared core of transcription factors that regulate cell cluster-specific genes between mice and humans. We characterize several sex-specific differentially expressed genes and the regulatory elements that control them in specific cell subpopulations. Overlapping cell-specific scATAC peaks with obesity-associated GWAS variants, identifies potential obesity-associated regulatory elements. Using reporter assays and CRISPR editing, we show that many of these sequences, including the top obesity-associated loci (FTOandMC4R), are functional enhancers whose activity is altered due to the obesity-associated variant and regulate known obesity genes. Combined, our work provides a catalog of genes and regulatory elements in hypothalamus cell subpopulations and uses obesity to showcase how integrative single-cell sequencing can identify functional variants associated with hypothalamus-related phenotypes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3