Abstract
Understanding the mechanical demands of an exercise on the musculoskeletal system is crucial to prescribe effective training or therapeutic interventions. Yet, that knowledge is currently limited in water, mostly because of the difficulty in evaluating external resistance. Here I reconcile recent advances in 3D markerless pose and mesh estimation, biomechanical simulations, and hydrodynamic modeling, to predict lower limb mechanical loading during aquatic exercises. Simulations are driven exclusively from a single video. In silico hip and knee joint forces agreed well with in vivo instrumented implant recordings downloaded from the OrthoLoad database, both in magnitude and direction. New insights into individual muscle contributions to joint loading were gained. This noninvasive method has the potential to standardize the reporting of exercise intensity, inform the design of rehabilitation protocols and improve their reproducibility.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献