Abstract
AbstractSpectrum-based Mass-Charge modeling is increasingly used in biological analysis. To explain statistical phenomenon with positive and negative fluctuations of amino acid charges in spike protein sequences from Omicron and other coronaviruses, we propose calculation-based Mass-Charge modeling, a normalized derivation algorithm with exact Excel and MATLAB tool involving separate quadrant extension to normalized covariance, which is still compatible with Pearson covariance co-efficiency. The number of amino acids, molecular weight, isoelectric point, amino acid composition, charged residues, mass-charge ratio, hydropathicity of the proteins were taken into consideration in the analyses, and the relative peak and dip of the average with spike protein sequences based on hydrophobic mass to isoelectric charges of amino acids were also examined. The analyses with the algorithm provide more clear insights leading to revealing underline evolving trends of the viral proteins. Spike proteins from SARS-CoV-2 variants, seasonal and murine coronaviruses were taken as representative examples in this study. The analyses demonstrate that the Mass-Charge covariance co-efficiency can distinguish subtle differences between biological properties of spike proteins and correlate well with viral infectivity and virulence.
Publisher
Cold Spring Harbor Laboratory