MAP4K4 regulates biomechanical forces at adherens junctions and focal adhesions to promote collective cell migration

Author:

Alberici Delsin Lara ElisORCID,Plutoni Cédric,Clouvel Anna,Keil Sarah,Marpeaux Léa,Elouassouli Lina,Khavari Adele,Ehrlicher AllenORCID,Emery GregoryORCID

Abstract

ABSTRACTCollective cell migration is important for normal development and tissue homeostasis, but can also promote cancer metastasis. To migrate collectively, cells need to coordinate their protrusion formation, rear retraction, adhesion sites dynamics, as well as forces generation and transmission. Nevertheless, the regulatory mechanisms coordinating these processes remain elusive. Using the A431 carcinoma cell line, we identify the kinase MAP4K4 as a central regulator of collective migration. We show that MAP4K4 inactivation blocks the migration of clusters while its overexpression decreases cluster cohesion. MAP4K4 regulates protrusion and retraction dynamics, remodels the actomyosin cytoskeleton, and controls the stability of both cell-cell and cell substrate adhesion. MAP4K4 promotes focal adhesion disassembly through the phosphorylation of Moesin, an actin and plasma membrane cross-linker, but disassembles adherens junctions through a Moesin-independent mechanism. By analyzing traction and intercellular forces, we found that the stabilization of adhesion sites in MAP4K4 loss of function leads to a tensional disequilibrium throughout the cell cluster, increasing the traction forces exerted onto the substrate and the tension loading at the cell-cell adhesions. Together, our results indicates that MAP4K4 activity is a key regulator of biomechanical forces at adhesion sites, promoting collective migration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3