Eosinophilic esophagitis-associated epithelial remodeling may limit esophageal carcinogenesis

Author:

Fuller Annie D.ORCID,Karami Adam L.,Kabir Mohammad Faujul,Klochkova Alena,Jackson Jazmyne L.,Mu Anbin,Tan Yinfei,Klein-Szanto Andres,Whelan Kelly A.

Abstract

AbstractUnder homeostatic conditions, esophageal epithelium displays a proliferation/differentiation gradient that is generated as proliferative basal cells give rise to suprabasal cells then terminally differentiated superficial cells. This proliferation/differentiation gradient is perturbed in esophageal pathologies both benign and malignant. Esophageal cancer is among the deadliest forms of human malignancy with 5-year survival rates of <20%. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two most common subtypes of esophageal cancer. Gastroesophageal reflux disease (GERD) is a primary risk factor for EAC. Although GERD and the food allergy-mediated condition eosinophilic esophagitis (EoE) are both associated with chronic esophageal inflammation and epithelial remodeling, including basal cell hyperplasia, epidemiological evidence suggests that EoE patients do not develop esophageal malignancy. Here, we perform single cell RNA-sequencing in murine models of EoE and ESCC to delineate the effects that these two conditions have specifically upon the cellular landscape of esophageal epithelium. In mice with EoE or ESCC, we find expansion of cell populations as compared to normal esophageal epithelium. In mice with EoE, we detect expansion of 4 suprabasal populations coupled with depletion of 4 basal cell populations. By contrast, mice with ESCC display expansion of 4 basal populations as well as depletion of 3 superficial populations. We further evaluated modules of co-expressed genes in EoE- and ESCC-enriched epithelial cell clusters. Senescence, glucocorticoid receptor signaling, and granulocyte-macrophage colony-stimulating factor pathways were associated with EoE-enriched clusters while pathways associated with cell proliferation and metabolism were identified in ESCC-enriched clusters. Finally, by pairing murine models of EoE and ESCC, we demonstrate that exposure to EoE inflammation limits esophageal carcinogenesis. Our findings provide the first functional investigation of the relationship between EoE and esophageal cancer and suggest that esophageal epithelial remodeling events occurring in response to EoE inflammation may limit act to esophageal carcinogenesis which may have future implications for leveraging allergic inflammation-associated alterations in epithelial biology to prevent and/or treat esophageal cancer.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3