An Empirical Study of ML-based Phenotyping and Denoising for Improved Genomic Discovery

Author:

Yuan BoORCID,Hormozdiari FarhadORCID,McLean Cory Y.,Cosentino JustinORCID

Abstract

AbstractGenome-wide association studies (GWAS) are used to identify genetic variants significantly correlated with a target disease or phenotype as a first step to detect potentiallycausalgenes. The availability of high-dimensional biomedical data in population-scale biobanks has enabled novel machine-learning-based phenotyping approaches in which machine learning (ML) algorithms rapidly and accurately phenotype large cohorts with both genomic and clinical data, increasing the statistical power to detect variants associated with a given phenotype. While recent work has demonstrated that these methods can be extended to diseases for which only low quality medical-record-based labels are available, it is not possible to quantify changes in statistical power since the underlying ground-truth liability scores for the complex, polygenic diseases represented by these medical-record-based phenotypes is unknown. In this work, we aim to empirically study the robustness of ML-based phenotyping procedures to label noise by applying varying levels of random noise to vertical cup-to-disc ratio (VCDR), a quantitative feature of the optic nerve that is predictable from color fundus imagery and strongly influences glaucoma referral risk. We show that the ML-based phenotyping procedure recovers the underlying liability score across noise levels, significantly improving genetic discovery and PRS predictive power relative to noisy equivalents. Furthermore, initial denoising experiments show promising preliminary results, suggesting that improving such methods will yield additional gains.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3