Selection-driven trait loss in independently evolved cavefish populations

Author:

Moran Rachel L.,Richards Emilie J.,Ornelas-García Claudia Patricia,Gross Joshua B.,Donny Alexandra,Wiese Jonathan,Keene Alex C.,Kowalko Johanna E.,Rohner Nicolas,McGaugh Suzanne E.

Abstract

AbstractPredicting the outcome of evolution is a central goal of modern biology, yet, determining the relative contributions of deterministic events (i.e., selection) and stochastic events (i.e., drift and mutation) to the evolutionary process remains a major challenge. Systems where the same traits have evolved repeatedly provide natural replication that can be leveraged to study the predictability of molecular evolution and the genetic basis of adaptation. Although mutational screens in the laboratory have demonstrated that a diversity of genetic mutations can produce phenocopies of one another, in natural systems, similar genetic changes frequently underly the evolution of phenotypes across independent lineages. This suggests a substantial role for constraint and determinism in evolution and supports the notion that there may be characteristics which make certain mutations more likely to contribute to phenotypic evolution. Here we use large-scale whole genome resequencing in the Mexican tetra,Astyanax mexicanus, to demonstrate that selection has played a primary role in repeated evolution of both trait loss and trait enhancement across independent cave lineages. We identify candidate genes underlying repeated adaptation to caves and infer the mode of repeated evolution, revealing that selection on standing genetic variation andde novomutations both contribute substantially to repeated adaptation. Finally, we show that genes with evidence of repeated evolution have significantly longer coding regions compared to the rest of the genome, and this effect is most pronounced in genes evolving convergently via independent mutations. Importantly, our findings provide the first empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the novel cave environment may impact the rate at which mutations occur.

Publisher

Cold Spring Harbor Laboratory

Reference112 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3