Changes in brain metabolite levels across childhood

Author:

Perdue Meaghan V.,DeMayo Marilena M.,Bell Tiffany K.,Boudes Elodie,Bagshawe Mercedes,Harris Ashley D.,Lebel CatherineORCID

Abstract

AbstractMetabolites play important roles in brain development and their levels change rapidly in the prenatal period and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neurochemistry across early-middle childhood remains understudied. We examined the developmental changes of key metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex (ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children aged 2-11 years (ACC: N=101 children, 112 observations; LTP: N=95 children, 318 observations). We found age-related effects for all metabolites. tNAA increased with age in both regions, while tCho decreased with age in both regions. tCr increased with age in the LTP only, and mI decreased with age in the ACC only. Glx did not show linear age effects in either region, but a follow-up analysis in only participants with ≥3 datapoints in the LTP revealed a quadratic effect of age following an inverted U-shape. These substantial changes in neurochemistry throughout childhood likely underlie various processes of structural and functional brain development.

Publisher

Cold Spring Harbor Laboratory

Reference85 articles.

1. Unified segmentation

2. Test–Retest Reliability of the Brain Metabolites GABA and Glx With JPRESS, PRESS, and MEGA‐PRESS MRS Sequences in vivo at 3T

3. An answer to “The nagging question of the function of N-Acetylaspartylglutamate.”;Neuroscience Communications,2015

4. Fitting Linear Mixed-Effects Models Using lme4;Journal of Statistical Software,2015

5. On the Adaptive Control of the False Discovery Rate in Multiple Testing with Independent Statistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3