Stability of neural representations in the auditory midbrain across the lifespan despite age-related brainstem delays

Author:

Land RüdigerORCID,Kral AndrejORCID

Abstract

AbstractThe extent to which aging of the central auditory pathway impairs auditory perception in the elderly independent of peripheral cochlear decline is debated. To cause auditory deficits in normal hearing elderly, central aging needs to degrade neural sound representations at some point along the auditory pathway. However, inaccessible to psychophysical methods, the level of the auditory pathway at which aging starts to effectively degrade neural sound representations remains poorly differentiated. Here we tested how potential age-related changes in the auditory brainstem affect the stability of spatiotemporal multiunit complex speech-like sound representations in the auditory midbrain of old normal hearing CBA/J mice. Although brainstem conduction speed slowed down in old mice, the change was limited to the sub-millisecond range and only minimally affected temporal processing in the midbrain (i.e. gaps-in-noise sensitivity). Importantly, besides the small delay, multiunit complex temporal sound representations in the auditory midbrain did not differ between young and old mice. This shows that although small age-related neural effects in simple sound parameters in the lower brainstem may be present in aging they do not effectively deteriorate complex neural population representations at the level of the auditory midbrain when peripheral hearing remains normal. This result challenges the widespread belief of ‘pure’ central auditory decline as an automatic consequence of aging. However, the stability of midbrain processing in aging emphasizes the role of undetected ‘hidden’ peripheral damage and accumulating effects in higher cortical auditory-cognitive processing explaining perception deficits in ‘normal hearing’ elderly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3