Abstract
AbstractMagnetic particle imaging (MPI) is a sensitive, high contrast tracer modality that images superparamagnetic iron oxide nanoparticles (SPIOs), enabling radiation-free theranostic imaging. MPI resolution is currently limited by scanner and particle constraints. Recent tracers have experimentally shown 10x resolution and signal improvements, with dramatically sharper M-H curves. Experiments suggest that this results from interparticle interactions, conforming to literature definitions of superferromagnetism. We thus call our tracers superferromagnetic iron oxide nanoparticles (SFMIOs). While SFMIOs provide excellent signal and resolution, they exhibit hysteresis, with non-negligible remanence and coercivity. We provide the first report on MPI scanning with remanence and coercivity, including the first quantitative measurements of SFMIO remanence decay and reformation using a novel multi-echo pulse sequence. We also describe an SNR-optimized pulse sequence for SFMIOs under human electromagnetic safety limitations. The resolution from SFMIOs could enable clinical MPI with 10× reduced scanner selection fields, reducing hardware costs by up to 100×.
Publisher
Cold Spring Harbor Laboratory