Cell type-specific assessment of cholesterol distribution in models of neurodevelopmental disorders

Author:

Czernecki Charlotte,Dixit Shirley,Riezman Isabelle,Innocenti Sabrina,Bornmann Caroline,Pfrieger Frank W.,Riezman Howard,Scheiffele PeterORCID

Abstract

AbstractMost nervous system disorders manifest through alterations in neuronal signaling based on abnormalities in neuronal excitability, synaptic transmission, and cell survival. However, such neuronal phenotypes are frequently accompanied – or even caused – by metabolic dysfunctions in neuronal or non-neuronal cells. The tight packing and highly heterogenous properties of neural, glial and vascular cell types pose significant challenges to dissecting metabolic aspects of brain disorders. Perturbed cholesterol homeostasis has recently emerged as key parameter associated with sub-sets of neurodevelopmental disorders. However, approaches for tracking and visualizing endogenous cholesterol distribution in the brain have limited capability of resolving cell type-specific differences. We here develop tools for genetically-encoded sensors that report on cholesterol distribution in the mouse brain with cellular resolution. We apply these probes to examine sub-cellular cholesterol accumulation in two genetic mouse models of neurodevelopmental disorders,Npc1andPtchd1knock-out mice. While both genes encode proteins with sterol-sensing domains that have been implicated in cholesterol transport, we uncover highly selective and cell type-specific phenotypes in cholesterol homeostasis. The tools established in this work should facilitate probing sub-cellular cholesterol distribution in complex tissues like the mammalian brain and enable capturing cell type-specific alterations in cholesterol flow between cells in models of brain disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3