H3K4 di- and trimethylation modulate the stability of RNA polymerase II pausing

Author:

Hu Shibin,Song AixiaORCID,Peng Linna,Tang Nan,Qiao Zhibin,Wang Zhenning,Chen Fei XavierORCID

Abstract

SUMMARYModifications of histones are intricately linked with the regulation of gene expression, with demonstrated roles in various physiological processes and disease pathogenesis. Methylation of histone H3 lysine 4 (H3K4), implemented by the COMPASS family, is enriched at promoters and associated cis-regulatory elements, with H3K4 trimethylation (H3K4me3) considered a hallmark of active gene promoters. However, the relative roles of deposition and removal of H3K4 methylation, as well as the extent to which these events contribute to transcriptional regulation have so far remained unclear. Here, through rapid depletion of the transcription regulator SPT5 or either of two shared subunits of COMPASS family members, we reveal a dynamic turnover of H3K4me3 mediated by the KDM5 family of histone demethylases. Loss of H3K4me3 following COMPASS disruption does not impair the recruitment of TFIID and initiating RNA polymerase II (Pol II). Instead, H3K4me3 loss leads to reductions in the paused form of Pol II on chromatin while inducing the relative enrichment of the Integrator-PP2A (INTAC) termination complex, leading to reduced levels of elongating polymerases, thus revealing how H3K4me3 dynamics can regulate Pol II pausing to sustain or attenuate transcription.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3