Developing best practices for genotyping-by-sequencing analysis using linkage maps as benchmarks

Author:

Taniguti Cristiane HayumiORCID,Taniguti Lucas MitsuoORCID,Amadeu Rodrigo RampazoORCID,Lau JeekinORCID,Gesteira Gabriel de SiqueiraORCID,Oliveira Thiago de PaulaORCID,Ferreira Getulio CaixetaORCID,Pereira Guilherme da SilvaORCID,Byrne DavidORCID,Mollinari MarceloORCID,Riera-Lizarazu OscarORCID,Garcia Antonio Augusto FrancoORCID

Abstract

AbstractBackgroundGenotyping-by-Sequencing (GBS) provides affordable methods for genotyping hundreds of individuals using millions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the bias generated by PCR duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regular meiosis. This, in turn, leads to difficulties in grouping and ordering markers resulting in inflated and incorrect linkage maps. Therefore, genotyping errors can be easily detected by linkage map quality evaluations.ResultsWe developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploid outcrossing populations. The workflows runGATKandfreebayesfor SNP calling andupdog, polyRAD, andSuperMASSAfor genotype calling, andOneMapandGUSMapto build linkage maps. Using simulated data, we observed which genotype call software fails in identifying common errors in GBS sequencing data and proposed specific filters to better handle them. We tested whether it is possible to overcome errors in a linkage map using genotype probabilities from each software or global error rates to estimate genetic distances with an updated version ofOneMap. We also evaluated the impact of segregation distortion, contaminant samples, and haplotype-based multiallelic markers in the final linkage maps. The results showed a low impact of segregation distortion in the linkage map quality, improvements in ordering markers with haplotype-based multiallelic markers, and improved maps with expected size using reliable genotype probabilities or a global error rate of 5%.ConclusionsThe pipelines results in each scenario changed according to the data set used, indicating that optimal pipelines and parameters are dataset-dependent and cannot be generalized to all GBS data sets. The Reads2Map workflow can reproduce the analysis in other GBS empirical data sets where users can select the pipeline and parameters adapted to their data context. The Reads2MapApp shiny app provides a graphical representation of the results to facilitate their interpretation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3