Rasputin/G3BP mediates o’nyong-nyong virus subversion of antiviral immunity in Anopheles coluzzii

Author:

Cottis Solène,Blisnick Adrien,Mitri Christian,Brito-Fravallo Emma,Matondo Mariette,Failloux Anna-Bella,Vernick Kenneth D.

Abstract

ABSTRACTThe G3BP proteins in vertebrates and Aedes mosquito ortholog, Rasputin, are essential for alphavirus infection, but the underlying mechanism of Rasputin/G3BP proviral activity is poorly understood. It has been suggested that G3BP could influence host immune signaling, but this has not been functionally demonstrated. Here, we find that depletion of Rasputin activity in Anopheles mosquitoes, the primary vectors of the alphavirus o’nyong-nyong (ONNV), provokes dysregulation of the antiviral Imd, JAK/STAT and RNAi pathways, indicating that Rasputin is required for expression of normal basal immunity in uninfected mosquitoes. Depletion of Rasputin during ONNV bloodmeal infection causes increased transcript abundance of genes in the Imd pathway including positive regulator Rel2, and decreases ONNV infection in mosquitoes. Loss of Rasputin is complemented by co-depletion of Imd pathway positive regulator, Rel2, which restores normal ONNV infection levels. Thus, the presence of Rasputin is required for ONNV inhibition of Imd activity, and viral inhibition of Imd explains much of the Rasputin proviral activity. The viral non-structural protein 3 (nsP3) binds to Rasputin and alters the profile of cellular proteins binding to Rasputin. In the presence of nsP3, 48 Rasputin-binding proteins are unchanged but seven binding proteins are excluded and eight new proteins bind Rasputin. The Rasputin binding partners altered by nsP3 are candidate factors for ONNV immune manipulation and subversion through Rasputin. Overall, these results are consistent with and strongly suggest a mechanism in which ONNV, probably nsP3, co-opts the normal Rasputin function assuring basal cellular immune activity in order to inhibit antiviral immunity and promote infection. These observations may be generalizable for Rasputin function during alphavirus infection of other mosquitoes, as well as for G3BP function in the mammalian host, and could offer a target for vector-based control of arbovirus transmission.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3