Abstract
AbstractEndometriosis is a leading cause of pain and infertility affecting millions of women globally. Identifying biologic and genetic effects on DNA methylation (DNAm) in endometrium increases understanding of mechanisms that influence gene regulation predisposing to endometriosis and offers an opportunity for novel therapeutic target discovery. Herein, we characterize variation in endometrial DNAm and its association with menstrual cycle phase, endometriosis, and genetic variants through analysis of genome-wide genotype data and methylation at 759,345 DNAm sites in endometrial samples from 984 deeply-phenotyped participants. We identify significant differences in DNAm profiles between menstrual cycle phases and at four DNAm sites between stage III/IV endometriosis and controls. We estimate that 15.4% of the variation in endometriosis is captured by DNAm, and identify DNAm networks associated with endometriosis. DNAm quantitative trait locus (mQTL) analysis identified 118,185 independentcis-mQTL including some tissue-specific effects. We find significant differences in DNAm profiles between endometriosis sub- phenotypes and a significant association between genetic regulation of methylation in endometrium and disease risk, providing functional evidence for genomic targets contributing to endometriosis risk and pathogenesis.
Publisher
Cold Spring Harbor Laboratory