Abstract
AbstractMotivationCell function is regulated by gene regulatory networks (GRNs) defined by protein-mediated interaction between constituent genes. Despite advances in experimental techniques, we can still measure only a fraction of the processes that govern GRN dynamics. To infer the properties of GRNs using partial observation, unobserved sequential processes can be replaced with distributed time delays, yielding non-Markovian models. Inference methods based on the resulting model suffer from the curse of dimensionality.ResultsWe develop a simulation-based Bayesian MCMC method for the efficient and accurate inference of GRN parameters when only some of their products are observed. We illustrate our approach using a two-step activation model: An activation signal leads to the accumulation of an unobserved regulatory protein, which triggers the expression of observed fluorescent proteins. With prior information about observed fluorescent protein synthesis, our method successfully infers the dynamics of the unobserved regulatory protein. We can estimate the delay and kinetic parameters characterizing target regulation including transcription, translation, and target searching of an unobserved protein from experimental measurements of the products of its target gene. Our method is scalable and can be used to analyze non-Markovian models with hidden components.AvailabilityAccompanying code in R is available athttps://github.com/Mathbiomed/SimMCMC.Contactjaekkim@kaist.ac.krorkresimir.josic@gmail.comorcbskust@korea.ac.krSupplementary informationSupplementary data are available atBioinformaticsonline.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献