Cortical reactivations predict future sensory responses

Author:

Nguyen Nghia D.,Lutas AndrewORCID,Fernando Jesseba,Vergara Josselyn,McMahon Justin,Dimidschstein Jordane,Andermann Mark L.

Abstract

SummaryPrevailing theories of offline memory consolidation posit that the pattern of neurons activated during a salient sensory experience will be faithfully reactivated, thereby stabilizing the entire pattern1-3. However, sensory-evoked patterns are not stable, but instead drift across repeated experiences4-7. To investigate potential roles of reactivations in the stabilization and/or drift of sensory representations, we imaged calcium activity of thousands of excitatory neurons in mouse lateral visual cortex. Presentation of a stimulus resulted in transient, stimulus-specific reactivations during the following minute. These reactivations depended on local circuit activity, as they were abolished by local silencing during the preceding stimulus. Contrary to prevailing theories, reactivations systemically differed from previous patterns evoked by the stimulus. Instead, they were more similar to future patterns evoked by the stimulus, therebypredictingrepresentational drift. In particular, neurons that participated more or less in early reactivations than in stimulus response patterns subsequently increased or decreased their future stimulus responses, respectively. The rate and content of these reactivations was sufficient to accurately predict future changes in stimulus responses and, surprisingly, the decreasing similarity of responses to distinct stimuli. Thus, activity patterns during sensory cortical reactivations may guide the drift in sensory responses to improve sensory discrimination8.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3