Notch engagement by Jag1 nanoscale clusters indicates a force-independent mode of activation

Author:

Smyrlaki Ioanna,Fördös Ferenc,Lago Iris Rocamonde,Wang Yang,Lentini Antonio,Luca Vincent C.,Reinius Björn,Teixeira Ana I.,Högberg Björn

Abstract

ABSTRACTThe Notch signaling pathway is a cell-cell communication system with fundamental roles in embryonic development and the nervous system. The model of Notch receptor activation that is currently most accepted, involves a force-induced conformation change at the negative regulatory region of the receptor, the subsequent recruitment of ADAM metalloproteases and a cleavage cascade that releases the Notch intracellular domain. Here, we define conditions that enable force-independent Notch activation through the formation of soluble, long-lived, multivalent ligand-receptor complexes. To investigate how ligand valency affects activation of Notch receptors, we treated iPSc-derived neuroepithelial stem-like (lt-NES) cells with different spatially defined, molecularly precise ligand nanopatterns on DNA origami nanostructures. Our data indicate that Notch signaling is activated via stimulation with multivalent clusters of the ligand Jag1, and even multivalent chimeric structures where some Jag1 proteins are replaced by other binders that do not target Notch. The findings are corroborated by systematic elimination, through experimental control, of several confounding factors that potentially could generate forces, including electrostatic interactions, endocytosis and non-specific binding. Taken together, our data suggest a model where Jag1 ligands are able to activate Notch receptors upon prolonged binding, which subsequently triggers downstream signaling in a force independent manner. These findings reveal a distinct mode of activation of Notch and could lay the foundation for the development of soluble Notch agonists that currently remain elusive.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3