Abstract
ABSTRACTEpigenetic clocks generated from DNA methylation array data provide important insights into biological aging, disease susceptibility, and mortality risk. However, these clocks cannot be applied to high-throughput, sequence-based datasets more commonly used to study nonhuman animals. Here, we built a generalizable epigenetic clock using genome-wide DNA methylation data from 493 free-ranging rhesus macaques. Using a sliding-window approach that maximizes generalizability across datasets and species, this model predicted age with high accuracy (± 1.42 years) in held-out test samples, as well as in two independent test sets: rhesus macaques from a captive population (n=43) and wild baboons in Kenya (n=271). Our model can also be used to generate insight into the factors hypothesized to alter epigenetic aging, including social status and exposure to traumatic events. Our results thus provide a flexible tool for predicting age in other populations and species and illustrate how connecting behavioral data with the epigenetic clock can uncover social influences on biological age.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献