Computational design of BclxL inhibitors that target transmembrane domain interactions

Author:

Duart Gerard,Elazar Assaf,Weinstein Jonathan J.,Gadea-Salom Laura,Ortiz-Mateu Juan,Fleishman Sarel J.,Mingarro Ismael,Martinez-Gil Luis

Abstract

AbstractSeveral methods have been developed to explore interactions among water-soluble proteins or regions of proteins. However, techniques to target transmembrane domains have not been examined thoroughly. Here we developed a novel computational approach to design transmembrane sequences that specifically modulate protein-protein interactions in the membrane. To illustrate this method we demonstrated that BclxL can interact with other members of the Bcl2 family through the transmembrane domain and that these interactions are necessary for BclxL control of cell death. Next, we designed sequences that specifically recognize and sequester the transmembrane domain of BclxL. Hence, we were able to prevent BclxL intra-membrane interactions and cancel its anti-apoptotic effect. These results advance our understanding of protein-protein interactions in membranes and provide new means to modulate them. Moreover, the success of our approach may trigger the development of a new generation of inhibitors targeting interactions between transmembrane domains.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3