Abstract
AbstractActivity-dependent plasticity of the axon initial segment (AIS) endows neurons with the ability to adapt action potential output to changes in network activity. Action potential initiation at the AIS highly depends on the clustering of voltage-gated sodium channels, however the molecular mechanisms regulating their plasticity remain largely unknown. Here, we used novel genetic tools to endogenously label sodium channels and their scaffolding protein, to reveal their nanoscale organization and longitudinally image AIS plasticity in hippocampal neurons, in slices and primary cultures. We find that induction of NMDA receptor-mediated long-term synaptic depression is linked to a rapid and local endocytosis of sodium channels from the distal AIS. These data reveal a novel fundamental mechanism for rapid activity-dependent AIS reorganization sharing conserved features with synaptic plasticity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献