Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits

Author:

Zhang JilinORCID,Zhang MingORCID,Wang QinruiORCID,Wen HanORCID,Liu Zheyi,Wang Fangjun,Wang Yuhang,Yao Fenyong,Song Nan,Kou Zengwei,Li Yang,Guo Fei,Zhu ShujiaORCID

Abstract

AbstractN-Methyl-D-Aspartate (NMDA) receptors are essential for many brain functions. These receptors are heterotetramers typically comprising two GluN1 subunits and two GluN2 subunits. The latter could alternate among four subtypes (N2A-N2D) and determine the functional diversity of NMDA receptors1, 2. For example, receptors containing N2C or N2D exhibit 50-fold lower channel open probability (Po) than those containing N2A (ref.3–5). Structures of N2A- and N2B-containing receptors have been extensively characterized, providing molecular basis for understanding NMDA receptor function6–14. Here we report the cryo-EM structures of N1-N2D and N1-N2C di-heterotetramers (di-receptors), and N1-N2A-N2C tri-heterotetramer (tri-receptor) at a resolution up to 3.0 Å. Structural analysis showed that the bilobate N-terminal domain (NTD) in N2D adopted an intrinsic closed conformation, leading to a compact NTD tetramer in N1-N2D receptor. Functional studies further demonstrated that, in di-receptors containing N2D but not N2A or N2B, crosslinking NTD at the tetrameric interface had no effect on channel activity, while crosslinking ligand-binding domain (LBD) of two N1 protomers significantly elevated Po. Surprisingly, we found that the N1-N2C di-receptors spontaneously oscillated between symmetric and asymmetric conformation. The later one occupied a predominant population, whereby two N2C protomers exhibited distinct conformation. This asymmetry, which was also found to a lesser extent in N1-N2A di-receptor10, was further locked by the binding of an N2C-specific allosteric potentiator PYD-106 to a unique binding pocket between NTD and LBD in only one N2C protomer. Finally, N2A and N2C in the N1-N2A-N2C tri-receptor displayed the conformation close to that found in one protomer of N1-N2A and N1-N2C di-receptors, respectively. These findings provide a comprehensive structural understanding of diverse functional properties of major NMDA receptor subtypes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3