NMY-2, TOE-2 and PIG-1 RegulateC. elegansAsymmetric Cell Divisions

Author:

Robinson Joseph,Teuliere JeromeORCID,Yoo Shinja,Garriga GianORCID

Abstract

AbstractAsymmetric cell division (ACD) is an important mechanism that generates cellular diversity during development. Not only do asymmetric cell divisions produce daughter cells of different fates, many can produce daughters of different sizes, which we refer to as Daughter Cell Size Asymmetry (DCSA). InC. elegans, apoptotic cells are frequently produced by asymmetric divisions that exhibit DCSA, where the smaller daughter dies. We focus here on the divisions of the Q.a and Q.p neuroblasts, which produce apoptotic cells and divide with opposite polarity using both distinct and overlapping mechanisms. The PIG-1/MELK and TOE-2 proteins both regulate DCSA and specify the apoptotic cell fate in both the Q.a and Q.p divisions. In many asymmetric cell divisions, the non-muscle myosin NMY-2 is involved in properly positioning the cleavage furrow to produce daughters of unequal size. It was previously reported that NMY-2 is asymmetrically distributed and required for the DCSA of Q.a but not Q.p. In this study, we examined endogenously tagged reporters of NMY-2, TOE-2, and PIG-1 and found that all were asymmetric at the cortex during both the Q.a and Q.p divisions. TOE-2 and NMY-2 were biased toward the side of the dividing cell that would produce the smaller daughter, whereas PIG-1 was biased toward the side that would produce the larger daughter. We used temperature-sensitivenmy-2mutants to determine the role ofnmy-2in these divisions and found that these mutants only displayed DCSA defects in the Q.p division. We generated double mutant combinations between thenmy-2mutations and mutations intoe-2andpig-1. Thenmy-2mutations did not significantly alter the DCSA of thetoe-2andpig-1mutants but did alter the fate of the Q.a and Q.p daughters. This finding suggests that NMY-2 functions together with TOE-2 and PIG-1 to regulate DCSA but plays an independent role in specifying the fate of the Q.a and Q.p descendants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3