Circuit-specific selective vulnerability in the DMN persists in the face of widespread amyloid burden

Author:

Brunwasser Samuel J.,Farris Clayton,Elmore Halla,Dyer Eva L.ORCID,Nair Kiran Bhaskaran,Whitesell Jennifer D.ORCID,Harris Julie A.ORCID,Hengen Keith B.ORCID

Abstract

ABSTRACTThe relationship between brainwide functional decline and accumulation of pathological protein aggregates in Alzheimer’s disease (AD) is complex and not well understood. A set of highly interconnected cortical regions known as the default mode network (DMN) exhibits selective vulnerability to both functional decline and amyloid beta (Aβ) plaques in early AD. One possibility is that early Aβ accumulation in the DMN drives vulnerability. However, it is unknown whether there is something intrinsic to neuronal projections within the DMN that biases these circuits towards dysfunction. Here we directly test this hypothesis using long-term recordings of the spiking activity of ensembles of single units in freely behaving mice characterized by global cortical and hippocampal Aβ burden (APP/PS1). Specifically, we track the interactions of a population of neurons within a DMN region and two additional populations that comprise monosynaptic targets, one within and the other outside the DMN. In addition, we record single neurons in hippocampus and examine interactions between in-DMN and out-DMN cortical circuits triggered on hippocampal sharp-wave ripples, stereotyped hippocampal events that contribute to memory consolidation in the cortex. We examine the statistics of local activity as well as inter-regional communication in a region, genotype, and brain-state dependent manner. Our data reveal dysfunction restricted to in-DMN projecting circuits. In contrast, communication along neuronal projections that originate in the DMN but target out-DMN populations are equivalent in APP/PS1 and WT mice. Circuit dysfunction is most evident throughout sleep as well as within sharp-wave ripples. Our results indicate that cells in the DMN exhibit differential intrinsic vulnerability to amyloid injury dependent on their projection targets.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3