Distinct states of nucleolar stress induced by anti-cancer drugs

Author:

Potapova Tamara A.ORCID,Unruh Jay R.ORCID,Conkright-Fincham Juliana,Banks Charles A. S.ORCID,Florens LaurenceORCID,Schneider David A.ORCID,Gerton Jennifer L.ORCID

Abstract

AbstractRibosome biogenesis is one of the most essential and energy-consuming cellular functions. It takes place mainly in the nucleolus. For cancer cells, the nucleolar function is especially important due to the high demand for ribosomes to support continuous proliferation. The goal of this study was to assess the effects of existing chemotherapy drugs on the nucleolar state. For this, we conducted an imaging-based screen for anticancer drugs that induce morphological re-organization consistent with nucleolar stress. For a readout, we developed a novel parameter termed “nucleolar normality score”, which measures ratios of dense fibrillar center and granular component in the nucleolus and nucleoplasm. We show that multiple classes of drugs cause nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Different classes of drugs induced morphologically and molecularly distinct states of nucleolar stress. By applying phospho-proteomics and live imaging strategies, we characterized in detail the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that targets RNA Pol II. Inhibition of CDK9 dramatically reduced rRNA production, caused dissociation of RNA Polymerase I catalytic subunit POLR1A from ribosomal DNA and dispersal of the nucleolar granular component, a stress we refer to as the “bare scaffold” state. We identified multiple nucleolar CDK phosphorylation substrates, including RNA Pol I – associated protein Treacle, and demonstrated that CDK9 can phosphorylate Treacle in vitro. This implies that transcriptional CDKs coordinate the action of RNA pol I and RNA pol II. Furthermore, molecular dynamics analysis of the endogenous nucleolar protein NPM1 demonstrated that CDK inhibition vastly increased its mobility, consistent with the loss of nucleolar integrity. We conclude that many classes of chemotherapy compounds directly or indirectly target nucleolar structure and function, and recommend considering this in anticancer drug development.Types of nucleolar stresses identified in this study.(1) DNA intercalators and RNA Pol inhibitors induced canonical nucleolar stress manifested by partial dispersion of GC components and segregation of nucleolar stress caps. (2) Inhibition of mTOR and PI3K growth pathways caused a metabolic suppression of function without dramatic re-organization of nucleolar anatomy. (3) Inhibitors of HSP90 and proteasome caused proteotoxicity – loss of protein homeostasis and accumulation of misfolded and/or not degraded proteins. (4) Inhibition of transcriptional CDK activity resulted in the loss of interaction between rDNA, RNA Pol I, and granular component proteins, resulting in almost complete nucleolar dissolution, with an extended bare rDNA scaffold and few associated proteins remaining.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3