Mapping single-cell responses to population-level dynamics during antibiotic treatment

Author:

Kim KyeriORCID,Wang TengORCID,Ma Helena R.ORCID,Şimşek EmrahORCID,Li BoyanORCID,Andreani VirgileORCID,You LingchongORCID

Abstract

AbstractTreatment of sensitive bacteria with beta-lactam antibiotics often leads to two salient population-level features: a transient increase in total population biomass before a subsequent decline, and a linear correlation between growth and killing rates. However, it remains unclear how these population-level responses emerge from collective single-cell responses. During beta-lactam treatment, it is well recognized that individual cells often exhibit varying degrees of filamentation before lysis. We show that the probability of cell lysis increases with the extent of filamentation and that this dependence is characterized by unique parameters that are specific to bacterial strain, antibiotic dose, and growth condition. Modeling demonstrates how the single-cell lysis probabilities can give rise to population-level biomass dynamics, which were experimentally validated. This mapping provides insights into how the population biomass time-kill curve emerges from single cells and allows the representation of both single-and population-level responses with universal parameters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3