Release site plasticity via Unc13A regulatory domains mediates synaptic short-term facilitation and homeostatic potentiation

Author:

Jusyte Meida,Blaum Natalie,Böhme Mathias A.,Berns Manon M. M.,Bonard Alix E.,Kobbersmed Janus R. L.,Walter Alexander M.ORCID

Abstract

AbstractChemical synaptic transmission relies on neurotransmitter release from presynaptic release sites and on transmitter-sensing by the postsynaptic cell. Presynaptic plasticity increasing neurotransmitter release achieves two fundamental nervous system functions: It tunes some synapses to be more responsive to millisecond repetitive activation and it maintains signals when postsynaptic transmitter sensitivity is reduced. How enhanced neurotransmitter release is achieved in these phenomena, termed short-term facilitation and homeostatic potentiation, remains unknown. We combine mathematical modeling and experimental analysis ofDrosophilaneuromuscular junction model synapses to elucidate the molecular mechanisms underlying these forms of plasticity. Our results indicate that both phenomena depend on a rapid increase in the participation of neurotransmitter release sites which is controlled by the regulatory domains of the evolutionarily conserved (M)Unc13A protein that bind Ca2+/Calmodulin and diacylglycerol. Mutation of the Calmodulin binding (CaM) domain increased baseline transmission and impaired both short-term facilitation and acute homeostatic potentiation. Mathematical modeling indicated that these defects result from too many release sites participating at rest combined with the inability to plastically further increase their number. Super-resolution microscopy revealed that this coincided with a redistribution of Unc13A’s functionally essential MUN domain closer to the synaptic plasma membrane, which may constitute the molecular switch to increase release site participation. Similar consequences (enhanced baseline transmission, block of both short-term facilitation and homeostatic potentiation) were caused by the acute pharmacological activation of the C1 domain of wildtype Unc13A using phorbol esters. This treatment had no effect on Unc13A CaM domain mutants, indicating that both the CaM and C1 domains activate a binary release site switch. Thus, our findings indicate that Unc13A regulatory domains are tuned to integrate a multitude of signals on various timescales to switch release site participation for synaptic plasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3