SLC3A2 N-glycosylation and alternate evolutionary trajectories for amino acid metabolism

Author:

Zhang CunjieORCID,Shafaq-Zadah MassiullahORCID,Pawling JudyORCID,Ng Deanna Wan JieORCID,Hesketh Geoffrey G.ORCID,Dransart EstelleORCID,Pacholczyk Karina,Longo JosephORCID,Gingras Anne-ClaudeORCID,Penn Linda Z.ORCID,Johannes LudgerORCID,Dennis James W.ORCID

Abstract

ABSTRACTSLC3A2 (4F2hc, CD98) is an adaptor to the SLC7A exchangers and has undergone extensive repositioning of N-glycosylation sites with vertebrate evolution, presumably in synchrony with the species-specific demands of metabolism. The SLC3A2*SLC7A5 heterodimer imports essential amino acids (AA) and thereby stimulates mTOR signaling, while SLC3A2*SLC7A11 imports cystine required for glutathione synthesis and mitigation of oxidative stress. Analysis of SLC3A2 N-glycans revealed stable site-specific profiles of Golgi remodeling, apart from the conserved N365 site where branching and poly-N-acetylglucosamine content were sensitive to the insertion of lost ancestral sites and to metabolism. N-glycans at N381 and N365 stabilized SLC3A2 in the galectin lattice and opposed endocytosis, while N365 which is nearest the membrane, also promoted down-regulation by galectin-driven clathrin-independent endocytosis (glycolipid-lectin GL-Lect). This is the first report of both positive and negative regulation by galectin binding to N-glycans that are strategically positioned in the same membrane glycoproteins. Proteomics analysis in SLC3A2 mutant HeLa cells with induced re-expression of SLC3A2 as bait revealed the canonical non-N-glycosylated interactors, SLC7A5 and SLC7A11 exchangers, but also AA transporters that were dependent on SLC3A2 N-glycosylation, and are themselves, N-glycosylated AA/Na+symporters (SLC7A1, SLC38A1, SLC38A2, SLC1A4, SLC1A5). The results suggest that the N-glycans on SLC3A2 regulate clustering of SLC7A exchangers with AA/Na+symporters, thereby promoting Gln/Glu export-driven import of essential AA and cystine, with the potential to adversely impact redox balance. The evolution of modern birds (Neoaves) led to improved control of bioenergetics with the loss of genes including SLC3A2, SLC7A-5, -7, -8, -10, BCAT2, KEAP1, as well as duplications of SLC7A9, SLC7A11 and the Golgi branching enzymes MGAT4B and MGAT4C known to enhance affinities for galectins. Analyzing the fate of these and other genes in the down-sized genomes of birds, spanning ∼10,000 species and >100 Myr of evolution, may reveal the mystery of their longevity with prolonged vitality.Key PointsGolgi N-glycan remodeling at each site on SLC3A2 differs with the microenvironment.The galectin lattice and GL-Lect mediated endocytosis act as opposing forces on trafficking, controlled by N-glycans at the distal N381 and membrane proximal N365 sites, respectively.Mutation at N381 or N365 decreased SLC3A2 association with SLC7A5, SLC7A11 and N-glycosylated AA/Na+symporters as well as the capacity to mitigate stress.Clustering of SLC3A2*SLC7A exchangers, with AA/Na+symporter and ATPase Na+/K+exchanger promotes growth but continuously consumes ATP in non-proliferating cells.Bird evolution has improved bioenergetics with the deletion of SLC3A2 and associated transporters; - replaced by transporters of keto acids and a re-enforced galectin lattice.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endocytic Roles of Glycans on Proteins and Lipids;Cold Spring Harbor Perspectives in Biology;2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3