Aryl hydrocarbon receptor utilises cellular zinc signals to maintain the gut epithelial barrier

Author:

Hu Xiuchuan,Xiao Wenfeng,Lei Yuxian,Green Adam,Lee Xinyi,Maradana Muralidhara Rao,Gao Yajing,Xie Xueru,Wang Rui,Chennell George,Basson M. Albert,Kille Pete,Maret Wolfgang,Bewick Gavin A.,Zhou Yufeng,Hogstrand ChristerORCID

Abstract

AbstractBoth zinc and plant-derived ligands of the aryl hydrocarbon receptor (AHR) are dietary components which regulate intestinal epithelial barrier function and protect against Inflammatory Bowel Disease (IBD)1,2. Here, we explore whether zinc and AHR pathway are linked using a mouse IBD model with follow-on studies on human and mouse ileum organoids. Our data demonstrate that AHR regulates cellular zinc uptake, and that zinc is an integral part of AHR signalling processes. We show that dietary supplementation in mice with the plant-derived AHR ligand precursor, indole-3-carbinol (I3C), offers a high level of protection against dextran sulfate sodium induced IBD while protection fails in mice with AHR deleted in the intestinal epithelium. AHR agonist treatment is also ineffective in mice with a nutritional zinc deficiency. Experiments in the human Caco-2 cell line and ileum organoids showed that AHR activation increases total cellular zinc and cytosolic free Zn2+concentrations through transcriptional upregulation of severalSLC39zinc importers. As a consequence, genes for tight junction (TJ) proteins were upregulated in a zinc-dependent manner involving zinc inhibition of signalling to NF-κB and attenuated degradation of TJ proteins through zinc inhibition of calpain activity. Thus, our data indicate that AHR activation by plant-derived dietary ligands improves gut barrier function via zinc-dependent cellular pathways, suggesting that combined dietary supplementation with AHR ligands and zinc might be effective in preventing and treating inflammatory gut disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3