Comparative single-cell profiling reveals distinct cardiac resident macrophages essential for zebrafish heart regeneration

Author:

Wei Ke-Hsuan,Lin I-Ting,Chowdhury Kaushik,Liu Kuan-Ting,Ko Tai-MingORCID,Chang Yao-Ming,Yang Kai-Chien,Lai Shih-LeiORCID

Abstract

AbstractZebrafish exhibit a robust ability to regenerate their hearts following injury, and the immune system plays a key role in this process. We previously showed that delaying macrophage recruitment by clodronate liposome (CL) treatment compromises neutrophil resolution and heart regeneration, even when the infiltrating macrophage number was restored within the first-week post injury (Lai et al., 2017). Here, we examined the molecular mechanisms underlying the cardiac repair of regenerative PBS-control hearts vs. non-regenerative CL-treated hearts. Bulk transcriptomic analyses revealed that CL-treated hearts exhibited disrupted inflammatory resolution and energy metabolism during cardiac repair. Temporal single-cell profiling of inflammatory cells in regenerative vs. non-regenerative conditions further identified heterogenous macrophages and neutrophils with distinct infiltration dynamics, gene expression, and cellular crosstalk. Among them, two residential macrophage subpopulations were enriched in regenerative hearts and barely recovered in non-regenerative hearts. Early CL treatment at 8 days or even 1 month before cryoinjury led to the depletion of resident macrophages without affecting the circulating macrophage recruitment to the injured area. Strikingly, these resident macrophage-deficient zebrafish still exhibited compromised neovascularization and scar resolution. Our results characterized the inflammatory cells of the zebrafish injured hearts and identified key resident macrophage subpopulations prerequisite for successful heart regeneration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3