Abstract
ABSTRACTNeuroendocrine tumors (NETs) are rare cancers that may arise in the gastrointestinal tract and pancreas. The fundamental mechanisms driving gastroenteropancreatic (GEP) NET growth remain incompletely elucidated; however, the heterogeneous clinical behavior of GEP-NETs suggests that both cellular lineage dynamics and tumor microenvironment influence tumor pathophysiology. Here, we investigated the single-cell transcriptomes of tumor and immune cells from patients with gastroenteropancreatic NETs. Malignant GEP-NET cells expressed genes and regulons associated with normal, gastrointestinal endocrine cell differentiation and fate determination stages. While tumor and lymphoid compartments sparsely expressed immunosuppressive targets, infiltrating myeloid cells were enriched for alternative immunotherapy pathways includingVSIR, Tim3/Gal9, andSIGLEC10. Finally, analysis of paired primary and metastatic tissue specimens from small intestinal NETs demonstrated transcriptional transformation between the primary tumor and its distant metastasis. Our findings highlight the transcriptomic heterogeneity that distinguishes the cellular landscapes of GEP-NET anatomic subtypes and reveal potential avenues for future precision medicine therapeutics.
Publisher
Cold Spring Harbor Laboratory