Poly ADP-Ribose Signaling is Dysregulated in Huntington’s Disease Patients

Author:

Maiuri TamaraORCID,Bazan Carlos BarbaORCID,Harding Rachel J.ORCID,Begeja NolaORCID,Kam Tae-InORCID,Byrne Lauren M.ORCID,Rodrigues Filipe B.ORCID,Warner Monica M.ORCID,Neuman KaitlynORCID,Mansoor MuqtasidORCID,Badiee MohsenORCID,Dasovich MorganORCID,Leung Anthony K. L.ORCID,Andres Sara N.ORCID,Wild Edward J.ORCID,Dawson Ted M.,Dawson Valina L.ORCID,Arrowsmith Cheryl H.ORCID,Truant RayORCID

Abstract

AbstractHuntington’s disease (HD) is an autosomal dominant genetic neurodegenerative disease caused by a CAG expansion in theHuntingtin (HTT)gene, translating to an expanded polyglutamine tract in the huntingtin (HTT) protein. Age at disease onset is correlated to CAG repeat length, but varies by decades between individuals with identical repeat lengths. Genome-wide association studies link HD modification to DNA repair and mitochondrial health pathways. Recent clinical studies show elevated DNA damage in HD, even at the premanifest stage of disease. One of the major DNA repair nodes influencing neurodegenerative disease is the PARP pathway. Accumulation of poly ADP-ribose (PAR), produced by PARP1 and PARP2, has been implicated in the pathology of Alzheimer’s and Parkinson’s diseases, as well as autosomal recessive cerebellar ataxia. We report that HD mutation carriers have lower cerebrospinal fluid PAR levels than healthy controls, starting at the premanifest stage. Patient-derived fibroblasts have reduced PARP1/2 activity and elevated DNA damage, while elevated PAR levels are only revealed upon inhibition of PAR degradation. These phenotypes are rescued by moderate huntingtin level reduction via the huntingtin-lowering splice modulator drug, LMI070 (Branaplam). As a direct mechanism, we have defined a PAR-binding motif in huntingtin, detected huntingtin complexed with PARylated proteins in human cells during stress, and localized huntingtin to mitotic chromosomes upon inhibition of PAR degradation. Direct huntingtin PAR binding was measured by fluorescence polarization and visualized by atomic force microscopy. These results provide insight into a very early molecular mechanism of HD, suggesting possible targets in HD to design early preventive therapies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3