IMPASTO: Multiplexed cyclic imaging without signal removalviaself-supervised neural unmixing

Author:

Kim Hyunwoo,Bae Seoungbin,Cho Junmo,Nam Hoyeon,Seo Junyoung,Han Seungjae,Yi Euiin,Kim Eunsu,Yoon Young-Gyu,Chang Jae-Byum

Abstract

AbstractSpatially resolved proteomics requires a highly multiplexed imaging modality. Cyclic imaging techniques, which repeat staining, imaging, and signal erasure, have been adopted for this purpose. However, due to tissue distortion, it is challenging to obtain high fluorescent signal intensities and complete signal erasure in thick tissue with cyclic imaging techniques. Here, we propose an “erasureless” cyclic imaging method named IMPASTO. In IMPASTO, specimens are iteratively stained and imaged without signal erasure. Then, images from two consecutive rounds are unmixed to retrieve the images of single proteins through self-supervised machine learning without any prior training. Using IMPASTO, we demonstrate 30-plex imaging from brain slices in 10 rounds, and when used in combination with spectral unmixing, in five rounds. We show that IMPASTO causes negligible tissue distortion and demonstrate 3D multiplexed imaging of brain slices. Further, we show that IMPASTO can shorten the signal removal processes of existing cyclic imaging techniques.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3