Contrast detection is enhanced by non-stochastic, high-frequency transcranial alternating current stimulation with triangle and sine waveform

Author:

Potok WeronikaORCID,van der Groen OnnoORCID,Sivachelvam Sahana,Bächinger MarcORCID,Fröhlich FlavioORCID,Kish Laszlo B.ORCID,Wenderoth NicoleORCID

Abstract

AbstractStochastic Resonance (SR) describes a phenomenon where an additive noise (stochastic carrier-wave) enhances the signal transmission in a nonlinear system. In the nervous system, nonlinear properties are present from the level of single ion channels all the way to perception and appear to support the emergence of SR. For example, SR has been repeatedly demonstrated for visual detection tasks, also by adding noise directly to cortical areas via transcranial random noise stimulation (tRNS). We mathematically show that high-frequency, non-stochastic, periodic signals can yield resonance-like effects with linear transfer and infinite signal-to-noise ratio at the output. Here we tested this prediction empirically and investigated whether non-random, high-frequency, transcranial alternating current stimulation (hf-tACS) applied to visual cortex could induce resonance-like effects and enhance performance on a visual detection task. We demonstrated in 28 participants that applying 80 Hz triangular-waves or sine-waves with hf-tACS reduced visual contrast detection threshold for optimal brain stimulation intensities. The influence of hf-tACS on contrast sensitivity was equally effective to tRNS-induced modulation, demonstrating that both hf-tACS and tRNS can reduce contrast detection thresholds. Our findings suggest that a resonance-like mechanism can also emerge when non-stochastic electrical waveforms are applied via hf-tACS.New & NoteworthyOur findings extend our understanding of neuromodulation induced by noninvasive electrical stimulation. We provide first evidence showing acute online benefits of hf-tACStriangleand hf-tACSsinetargeting the primary visual cortex (V1) on visual contrast detection in accordance with the resonance-like phenomenon. The ‘non-stochastic’ hf-tACS and ‘stochastic’ hf-tRNS are equally effective in enhancing visual contrast detection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3