Machine learning assisted ligand binding energy prediction forin silicogenerated glycosyl hydrolase enzyme combinatorial mutant library

Author:

Guranovic Igor,Kumar Mohit,Bandi Chandra K.ORCID,Chundawat Shishir P. S.ORCID

Abstract

AbstractMolecular docking is a computational method used to predict the preferred binding orientation of one molecule to another when bound to each other to form an energetically stable complex. This approach has been widely used for early-stage small-molecule drug design as well as identifying suitable protein-based macromolecule residues for mutagenesis. Estimating binding free energy, based on docking interactions of protein to its ligand based on an appropriate scoring function is often critical for protein mutagenesis studies to improve the activity or alter the specificity of targeted enzymes. However, calculating docking free energy for a large number of protein mutants is computationally challenging and time-consuming. Here, we showcase an end-to-end computational workflow for predicting the binding energy of pNP-Xylose substrate docked within the substrate binding site for a large library of combinatorial mutants of an alpha-L-fucosidase (TmAfc, PDB ID-2ZWY) belonging toThermotoga maritimaglycosyl hydrolase (GH) family 29. Briefly,in silicocombinatorial mutagenesis was performed for the top conserved residues inTmAfc as determined by running multiple sequence alignment against all GH29 family enzyme sequences downloaded from an in-house developed Carbohydrate-Active enZyme (CAZy) database retriever program. The binding energy was calculated through Autodock Vina with pNP-Xylose ligand docking with energy minimizedTmAfc mutants, and the data was then used to train a neural network model which was also validated for model predictions using data from Autodock Vina. The current workflow can be adopted for any family of CAZymes to rapidly identify the effect of different mutations within the active site on substrate binding free energy to identify suitable targets for mutagenesis. We anticipate that this workflow could also serve as the starting point for performing more sophisticated and computationally intensive binding free energy calculations to identify targets for mutagenesis and hence optimize use of wet lab resources.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , Kudlur, M. , Levenberg, J. , Monga, R. , Moore, S. , Murray, D. G. , Steiner, B. , Tucker, P. , Vasudevan, V. , Warden, P. , … Zheng, X. (2016). TensorFlow: A System for Large-Scale Machine Learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265–283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

2. Glycans as cancer biomarkers;Biochimica et Biophysica Acta (BBA) - General Subjects,2012

3. Click-Chemistry-Based Free Azide versus Azido Sugar Detection Enables Rapid In Vivo Screening of Glycosynthase Activity;ACS Chemical Biology,2021

4. Structure-Based Design of a Cyclophilin-Calcineurin Bridging Ligand

5. Auxiliary active site mutations enhance the glycosynthase activity of a GH18 chitinase for polymerization of chitooligosaccharides;Carbohydrate Polymers,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3