Female-Specific Pituitary Hypersensitivity to Gonadotropin-Releasing Hormone in a Mouse Model of Chronic Temporal Lobe Epilepsy

Author:

Cutia Cathryn A.ORCID,Leverton Leanna K.ORCID,Weis Karen E.,Raetzman Lori T.ORCID,Christian-Hinman Catherine A.ORCID

Abstract

AbstractGonadotropin hormone release from the anterior pituitary is critical to regulating reproductive endocrine function. Clinical evidence has documented that people with epilepsy display altered levels of gonadotropin hormones, both acutely following seizures and chronically. Despite this relationship, pituitary function remains a largely understudied avenue in preclinical epilepsy research. Recently, we showed that females in the intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy were found to display changes in pituitary expression of gonadotropin hormone and GnRH receptor genes. Circulating gonadotropin hormone levels, however, have yet to be measured in an animal model of epilepsy. Here, we evaluated the circulating levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), GnRH receptor (Gnrhr) gene expression, and sensitivity to exogenous GnRH in IHKA males and females. Although no changes in overall dynamics of pulsatile patterns of LH release were found in IHKA mice of either sex, estrus vs. diestrus changes in basal and mean LH levels were larger in IHKA females with prolonged, disrupted estrous cycles. In addition, IHKA females displayed increased pituitary sensitivity to GnRH and higherGnrhrexpression. The hypersensitivity to GnRH was observed on diestrus, but not estrus. Chronic seizure severity was not found to be correlated with LH parameters, and FSH levels were unchanged in IHKA mice. These results indicate that although there are changes in pituitary gene expression and sensitivity to GnRH in IHKA females, there may also be compensatory mechanisms that aid in maintaining gonadotropin release in the state of chronic epilepsy in this model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3