IL-33-induced neutrophilic inflammation and NETosis underlie rhinovirus-triggered exacerbations of asthma

Author:

Curren Bodie,Ahmed TufaelORCID,Howard Daniel RORCID,Ullah Md. AshikORCID,Sebina IsmailORCID,Rashid Ridwan BORCID,Sikder Md. Al AminORCID,Bissell AlecORCID,Ngo Sylvia,Jackson David JORCID,Toussaint MarieORCID,Edwards Michael R.,Johnston Sebastian LORCID,McSorley Henry J.ORCID,Phipps SimonORCID

Abstract

AbstractRhinovirus-induced neutrophil extracellular traps (NETs) contribute to acute asthma exacerbations, however the molecular factors that trigger NETosis in this context remain ill-defined. Here, we sought to implicate a role for IL-33, an epithelial cell-derived alarmin rapidly released in response to infection. In mice with chronic experimental asthma (CEA), but not naïve controls, rhinovirus inoculation induced an early (1 day post infection; dpi) inflammatory response dominated by neutrophils, neutrophil-associated cytokines (IL-1α, IL-1β, CXCL1) and NETosis, followed by a later, type-2 inflammatory phase (3-7 dpi), characterized by eosinophils, elevated IL-4 levels, and goblet cell hyperplasia. Notably, both phases were ablated by HpARI (Heligmosomoides polygyrusAlarmin Release Inhibitor), which blocks IL-33 release and signalling. Instillation of exogenous IL-33 recapitulated the rhinovirus-induced early phase, including the increased presence of NETs in the airway mucosa, in a PAD4-dependent manner.Ex vivoIL-33-stimulated neutrophils from mice with CEA, but not naïve mice, underwent NETosis, and produced greater amounts of IL-1α/β, IL-4, and IL-5. In nasal samples from rhinovirus-infected people with asthma, but not healthy controls, IL-33 levels correlated with neutrophil elastase and dsDNA. Our findings suggest that IL-33 blockade ameliorates the severity of an asthma exacerbation by attenuating neutrophil recruitment and the downstream generation of NETs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3